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Introduction: stream connection background

« stream connectivity best informs management

* hourly trail camera capture is:

cost effective

deploys into sensitive areas (headwaters)

informative (once QCed and labeled)

iIssues (staff time labeling could be improved)




Introduction: stream connection monitoring
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Introduction: stream connection states

same site in all six connection states

Disconnected
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Methods: accuracy on a new unseen site

- partition data to keep sites unseen in model training
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Methods: framework overview
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Methods A: preprocessing

« 5 quality filters:

« B&W
* Lens Flare
 Blur
o » Dark
Filters * nght

2 metadata filters:
« Triggered
« EXIF issues
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Methods A: temporal enhancemen
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Methods: dataset 2018-2020 CT DEEP labeled

Bellucci, CJ, Becker, ME, Czarnowski, M, Fitting, C. A novel
method to evaluate stream connectivity using trail cameras.
River Res Applic. 2020; 36: 1504— 1514.

~98K filtered 600x200 RGB images processed using the
SRIP framework (9.7GB compressed):



https://zenodo.org/records/14681118
https://zenodo.org/records/14681118

Methods C/E: ViT and DCNN

* Multi-head attention-based vision transformer ViT model*
« easy to setup and train
» finds gradient patterns via patches

A Deep Convolutional (DCNN) RESNET style*
* less overhead than ViT
» finds gradient patterns using convolutional layers
* requires more training

*using python keras 3 API
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Results: Limitations (using ViT
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e Confusion between 3 and 4
 Class 1 is difficult to detect
+ Classification of all six is very difficult!
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Results: VIT with TE and augmentation
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Results: enhancement and augmentation

Model Performance Comparison (No Augmentation)

1.0
Metric
B F1 accuracy

B 1-3 accuracy

Accuracy

 VIiT was best

VIT 3.4 4 Resnet 2 2 2 2 Resnet_3_4_6_3

 2-hours of TE was best

Model Performance Comparison (Basic Augmentation)
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Results: generative augmentation

L1 looks very
similar

L2 and L3 needs
more work to be
convincing
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Discussion: ViT and TE are ~90% accurate

* ViT with TE performs best for (feature learning)

« Generative Augmentation had issues with L2 and L3
+ traditional aug works for CNN models
* generative aug would allow smaller training sets

* Future direction are to use low-level eng features
» « multiple segmentation model ensemble
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Conclusion: good overall framework is needed

 We have approached human labeling for CT DEEP data

good data collection practice

good data QC and human labeling (>100K images)
use of preprocessing filters and TE are important
VIT works well on high quality data

lower accuracy is expected in different environments
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