
A framework for river connectivity classification
using temporal image processing 
and attention based neural networks

Timothy James Becker*, Derin Gezgin, JunYi He Wu
Department of Computer Science

Connecticut College

Mary Becker
Water Monitoring and Assessment
Connecticut Department of Energy 

and Environmental Protection
*corresponding author

COMPASS2025 (Toronto, CA) 7/25/25
8th ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies



• stream connectivity best informs management

• hourly trail camera capture is:

• cost effective

• deploys into sensitive areas (headwaters)

• informative (once QCed and labeled)

• issues (staff time labeling could be improved)
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Introduction: stream connection background 
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Introduction: stream connection monitoring 

2Bellucci, CJ, Becker, ME, Czarnowski, M, Fitting, C. A novel method to evaluate stream connectivity 
using trail cameras. River Res Applic. 2020; 36: 1504– 1514. T
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Introduction: stream connection states 
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• same site in all six connection states

T Bellucci, CJ, Becker, ME, Czarnowski, M, Fitting, C. A novel method to evaluate stream connectivity 
using trail cameras. River Res Applic. 2020; 36: 1504– 1514. 



• partition data to keep sites unseen in model training

Methods: accuracy on a new unseen site
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Methods: framework overview
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D - preprocessing

B - augmentation

C - training

A - preprocessing

E - inference
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Methods A: preprocessing
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• 5 quality filters:
• B&W
• Lens Flare
• Blur
• Dark
• Light

• 2 metadata filters:
• Triggered
• EXIF issues
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Methods A: temporal enhancement
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• Sorted by time
• Composited
• Luma channel
• Hue channel
• Homography check
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Methods: dataset 2018-2020 CT DEEP labeled

II

8

Bellucci, CJ, Becker, ME, Czarnowski, M, Fitting, C. A novel 
method to evaluate stream connectivity using trail cameras. 
River Res Applic. 2020; 36: 1504– 1514. 

~98K filtered 600x200 RGB images processed using the 
SRIP framework (9.7GB compressed): 
https://zenodo.org/records/14681118
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https://zenodo.org/records/14681118
https://zenodo.org/records/14681118


Methods C/E: ViT and DCNN
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• Multi-head attention-based vision transformer ViT model*
• easy to setup and train
• finds gradient patterns via patches

• A Deep Convolutional (DCNN) RESNET style*
• less overhead than ViT
• finds gradient patterns using convolutional layers
• requires more training

            *using python keras 3 API
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Results: Limitations (using ViT)  
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• Confusion between 3 and 4
• Class 1 is difficult to detect
• Classification of all six is very difficult!
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Results: ViT with TE and augmentation
raw_no_aug_resnet e4hr_no_aug_resnete2hr_no_aug_resnet

raw_no_aug_vit e2hr_no_aug_vit e4hr_no_aug_vit

A B C

D E F
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Results: enhancement and augmentation  
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• ViT was best

• 2-hours of TE was best

• Augmentation didn’t help

0-hr 2-hr 4-hr 0-hr 2-hr
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Results: generative augmentation  
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Original L1

Original L2

Original L3

Synthetic L2

Synthetic L1

Synthetic L3

• L1 looks very 
similar

• L2 and L3 needs 
more work to be 
convincing

• Augmentation 
didn’t help (L2 
and L3)
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• ViT with TE performs best for (feature learning)

• Generative Augmentation had issues with L2 and L3
• traditional aug works for CNN models
• generative aug would allow smaller training sets

• Future direction are to use low-level eng features
• multiple segmentation model ensemble

Discussion: ViT and TE are ~90% accurate
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Conclusion: good overall framework is needed  
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• We have approached human labeling for CT DEEP data

• good data collection practice

• good data QC and human labeling (>100K images)

• use of preprocessing filters and TE are important

• ViT works well on high quality data

• lower accuracy is expected in different environments
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