A framework for river connectivity classification using temporal image processing and attention based neural networks

Timothy James Becker*, Derin Gezgin, JunYi He Wu
Department of Computer Science
Connecticut College

*corresponding author

Mary Becker

Water Monitoring and Assessment Connecticut Department of Energy and Environmental Protection

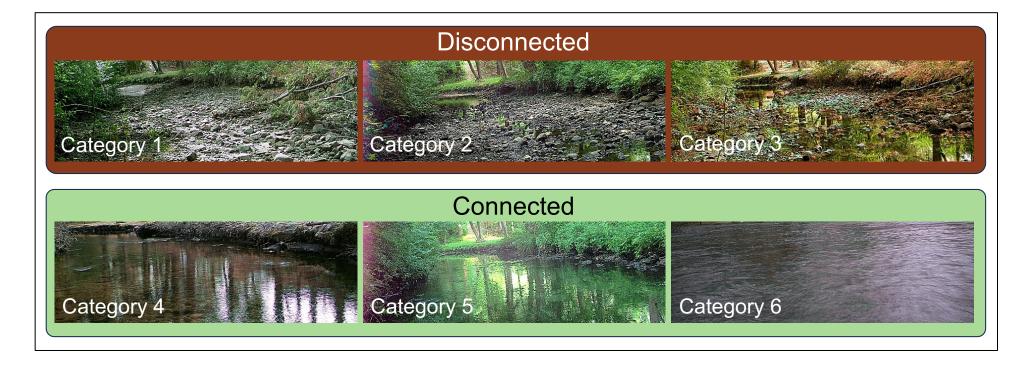
Introduction: stream connection background

- stream connectivity best informs management
- hourly trail camera capture is:
 - cost effective
 - deploys into sensitive areas (headwaters)
 - informative (once QCed and labeled)
 - issues (staff time labeling could be improved)

Store and Organize Deploy Trail Select Locations Image Data Camera Capture at Least 1 Collect Hourly Images Riffle-Pool Sequence Field Check and Trim Vegetation Download Images Quality Control Image Data Calibrate Image Readers **Calculate Average Daily** Inform Stream **Assign Stream Connectivity Stream Connectivity** Management Category to Images **Metrics** Visualize Metrics Quality Control Image Stream Connectivity Category Store Category in Database

Introduction: stream connection states

same site in all six connection states



Methods: accuracy on a new unseen site

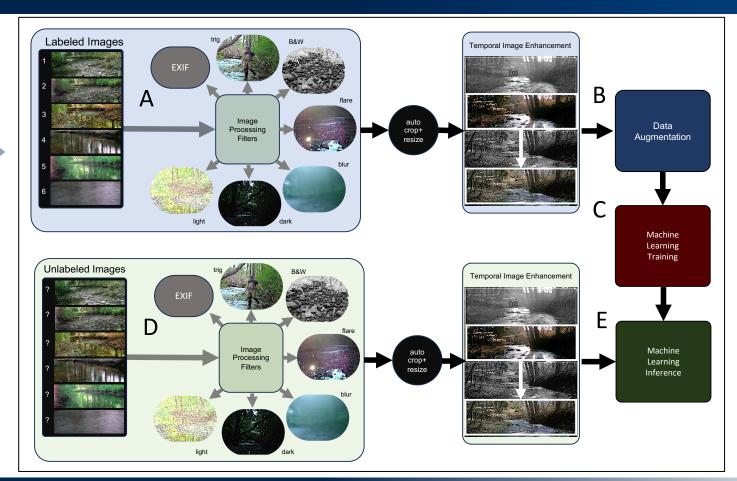
partition data to keep sites unseen in model training

$$\left\{ \left[X_{S_{1}}^{i1}, \ldots, X_{S_{1}}^{n_{1}} \right], \; , \; \ldots \; \left[X_{S_{m}}^{i1}, \ldots, X_{S_{m}}^{n_{m}} \right] \right\} \qquad \qquad \left\{ \left[Y_{S_{1}}^{i1}, \ldots, Y_{S_{1}}^{n_{1}} \right], \; , \; \ldots \; \left[Y_{S_{m}}^{i1}, \ldots, Y_{S_{m}}^{n_{m}} \right] \right\}$$

$$P(Y = y) = \begin{bmatrix} \frac{\sum_{i=1}^{m} \sum_{j=1}^{n_i} b(Y_{s_i}^{n_j}, y)}{\sum_{i=1}^{m} \sum_{j=1}^{n_i} 1} \end{bmatrix} : b(y, l) = \begin{cases} 0, & y = l \\ 1, & else \end{cases}$$
(1)

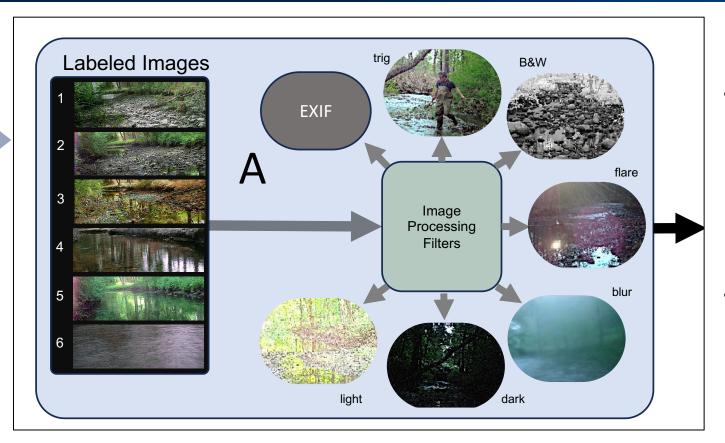
$$H(s_i, l) = \sum_{j=1}^{n_i} b\left(Y_{s_i}^{n_j}, l\right) \quad (2) \qquad \delta(u, t) = \left|\sum_{l=1}^{|L|} \left(\sum_{i \in u} H(S_i, l) - \sum_{j \in t} H(S_j, l)\right)\right| \quad (3)$$

Methods: framework overview

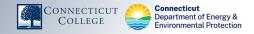


- A preprocessing
- B augmentation
- C training
- D preprocessing
- E inference

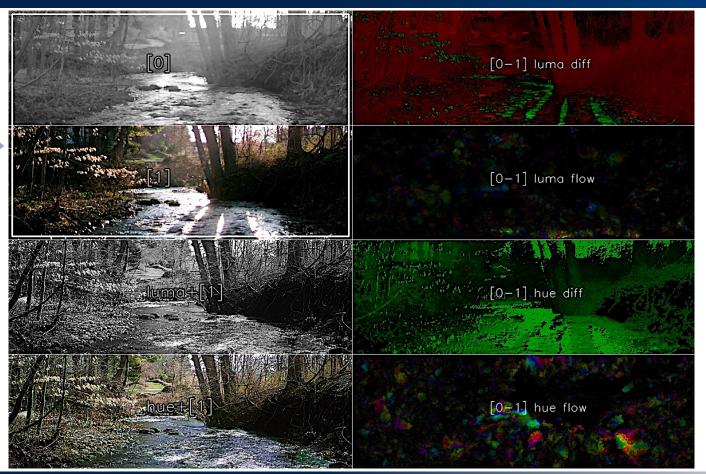
Methods A: preprocessing



- 5 quality filters:
 - B&W
 - Lens Flare
 - Blur
 - Dark
 - Light
- 2 metadata filters:
 - Triggered
 - EXIF issues



Methods A: temporal enhancement



- Sorted by time
- Composited
- Luma channel
- Hue channel
- Homography check

Methods: dataset 2018-2020 CT DEEP labeled

Bellucci, CJ, Becker, ME, Czarnowski, M, Fitting, C. A novel method to evaluate stream connectivity using trail cameras. River Res Applic. 2020; 36: 1504–1514.

~98K filtered 600x200 RGB images processed using the SRIP framework (9.7GB compressed):

https://zenodo.org/records/14681118

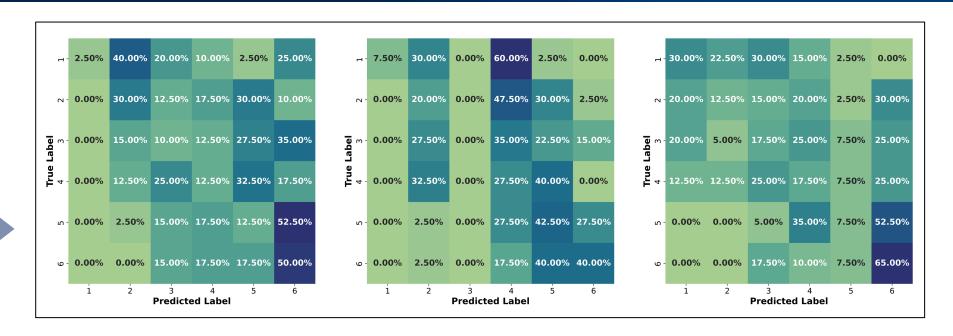
Methods C/E: ViT and DCNN

- Multi-head attention-based vision transformer ViT model*
 - easy to setup and train
 - finds gradient patterns via patches

- A Deep Convolutional (DCNN) RESNET style*
 - less overhead than ViT
 - finds gradient patterns using convolutional layers
 - requires more training

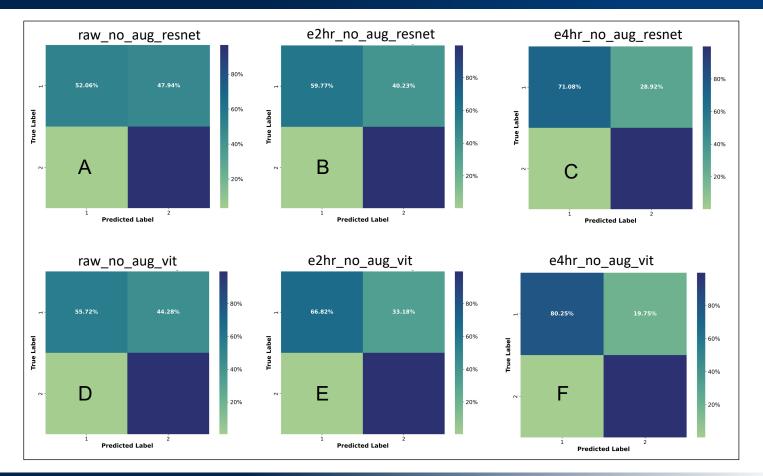
*using python keras 3 API

Results: Limitations (using ViT)

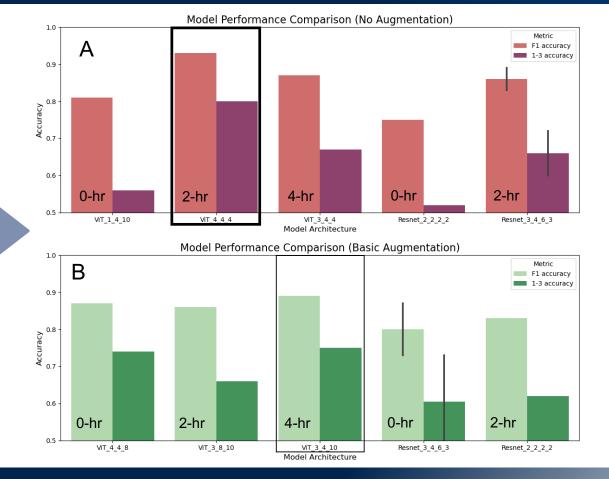


- Confusion between 3 and 4
- Class 1 is difficult to detect
- Classification of all six is very difficult!

Results: ViT with TE and augmentation



Results: enhancement and augmentation



- ViT was best
- 2-hours of TE was best
- Augmentation didn't help

Results: generative augmentation

- L1 looks very similar
- L2 and L3 needs more work to be convincing
- Augmentation didn't help (L2 and L3)

Discussion: ViT and TE are ~90% accurate

- ViT with TE performs best for (feature learning)
- Generative Augmentation had issues with L2 and L3
 - traditional aug works for CNN models
 - generative aug would allow smaller training sets
- Future direction are to use low-level eng features
 - multiple segmentation model ensemble

Conclusion: good overall framework is needed

- We have approached human labeling for CT DEEP data
 - good data collection practice
 - good data QC and human labeling (>100K images)
 - use of preprocessing filters and TE are important
 - ViT works well on high quality data
 - lower accuracy is expected in different environments

Acknowledgments

- Connecticut College SSRI program (A4000 ada GPU)
- Department of Computer Science (A4000 ada GPU)
- Al@Conn program (RAM and SSD)
- Conn Student Travel Funding
- Conn Staff Jim O'Connor, Danielle Fontaine
- CT DEEP Water Planning Staff, Melissa Czarnowski, Chris Bellucci

COMPASS25: https://doi.org/10.1145/3715335.3735455

preprint: https://doi.org/10.48550/arXiv.2502.00474

