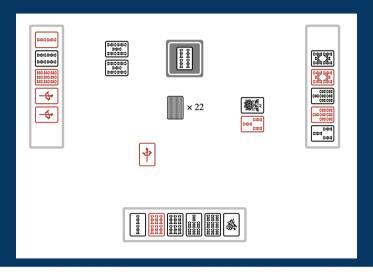
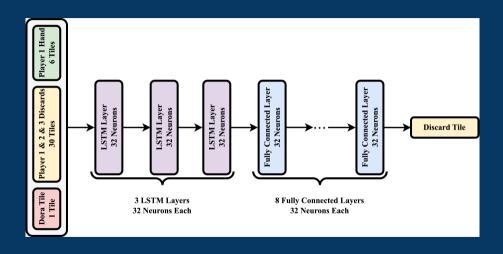
Evolutionary Optimization of Deep Learning Agents for Sparrow Mahjong

Jim O'Connor, Derin Gezgin, Gary B. Parker Connecticut College

AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment



Mahjong & Sparrow Mahjong



Mahjong & Sparrow Mahjong

Evo-Sparrow Agent

Baseline Agents

► Random Agent

Baseline Agents

- ► Random Agent
- ► Rule-Based Agent

Baseline Agents

- ► Random Agent
- ► Rule-Based Agent
- ► PPO-Optimized Agent

Results

	Avg. Score	Win %	Draw %	Loss %	Deal-in %
Evo-Sparrow	0.8687	28.55	44.17	10.97	16.31
Rule-Based	0.5051	20.91	44.17	12.65	22.28
Random	-1.3738	6.64	44.17	18.66	30.54
Evo-Sparrow	0.1934	22.80	36.08	17.60	23.52
PPO-Sparrow	0.1868	22.62	36.08	17.74	23.57
Rule-Based	-0.3802	19.07	36.08	9.98	34.87
Evo-Sparrow	-0.0027	19.20	42.81	10.79	27.20
Evo-Sparrow	0.0062	19.25	42.81	10.77	27.17
Evo-Sparrow	-0.0035	19.17	42.81	10.75	27.27

Results

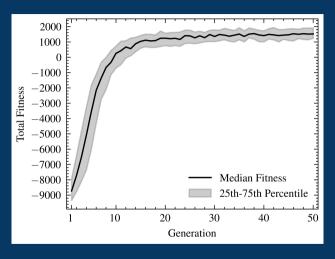


Figure: Median and 25th - 75th percentile fitness progression for 100 independent training runs

▶ Implement opponent modeling to improve predictive accuracy and adaptability.

- ▶ Implement opponent modeling to improve predictive accuracy and adaptability.
- ▶ Extend the architecture to support more complex neural models.

- ▶ Implement opponent modeling to improve predictive accuracy and adaptability.
- ► Extend the architecture to support more complex neural models.
- ► Explore richer state representations, including enhanced tile-relationship encodings or attention-based mechanisms.

- ▶ Implement opponent modeling to improve predictive accuracy and adaptability.
- Extend the architecture to support more complex neural models.
- ► Explore richer state representations, including enhanced tile-relationship encodings or attention-based mechanisms.
- ▶ Apply the proposed methodology to other stochastic, hidden-information games.

Thank You!

Questions?

